Involvement of Nucleotide Excision and Mismatch Repair Mechanisms in Double Strand Break Repair
نویسندگان
چکیده
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.
منابع مشابه
DNA Repair Pathways and Mechanisms
Our cells are constantly exposed to insults from endogenous and exogenous agents that can introduce damage into our DNA and generate genomic instability. Many of these lesions cause structural damage to DNA and can alter or eliminate fundamental cellular processes, such as DNA replication or transcription. DNA lesions commonly include base and sugar modifications, singleand double-strand breaks...
متن کاملMolecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair
DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280-315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesio...
متن کاملThe Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer
Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homol...
متن کاملRepair of DNA interstrand cross-links: interactions between homology-dependent and homology-independent pathways.
DNA interstrand cross-links (ICLs) are complex DNA lesions generated by bifunctional alkylating agents, a class of compounds extensively used in cancer chemotherapy. Formation of an ICL covalently links the opposing strands of the double helix and results in severe disruptions of normal DNA functions, such as replication, transcription, and recombination. Because of the structural complexity, I...
متن کاملSingle gene complementation of the hPMS2 defect in HEC-1-A endometrial carcinoma cells.
Results from the analysis of human tumor cell lines with mutations in DNA mismatch repair genes have contributed to the understanding of the functions of these gene products in DNA mismatch repair, microsatellite instability, cell cycle checkpoint control, transcription-coupled nucleotide excision repair, and resistance to cytotoxic agents. However, complementation of human DNA mismatch repair ...
متن کامل